Книга: Шахов А. «Квантовая теория общества

Демонстрация, которая перевернула идеи великого Исаака Ньютона о природе света, была невероятно простой. Ее «можно повторить с большой легкостью, где бы ни сияло солнце», говорил английский физик Томас Янг в ноябре 1803 года членам Королевского общества в Лондоне, описывая , который сейчас называется экспериментом с двойной щелью. И Янг не был восторженным юнцом. Он придумал элегантный и тщательно продуманный , демонстрирующий волновую природу света, и тем самым опроверг теорию Ньютона о том, что свет состоит из корпускул, то есть частиц.

Квантовая теория гораздо сложнее этой визуализации.

Но рождение квантовой физики в начале 1900-х годов дало понять, что свет состоит из крошечных неделимых единиц - или квантов - энергии, которые мы называем фотонами. Эксперимент Янга, проводимый с одиночными фотонами или даже с отдельными частицами материи, такими как электроны и нейроны, представляет собой загадку, которая заставляет задуматься о самой природе реальности. Некоторые даже использовали его для утверждений, что на квантовый мир влияет человеческое сознание. Но действительно ли простой эксперимент может продемонстрировать подобное?

Может ли сознание определять реальность?

В современной квантовой форме эксперимент Янга включает стрельбу отдельными частицами света или материи через две щели или отверстия, вырезанных в непрозрачном барьере. По одну сторону барьера находится экран, записывающий прибытие частиц (скажем, фотографическая пластинка в случае с фотонами). Здравый смысл заставляет нас ожидать, что фотоны будут проходить или через одну, или через другую щель и накапливаться за соответствующим проходом.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

HTML-версии работы пока нет.
Cкачать архив работы можно перейдя по ссылке, которая находятся ниже.

Подобные документы

    Теоретическое обоснование функционирования общества как монографическая постановка системы основных положений обществоведения. Исследование вопросов государственного управления. Континуальная концепция и объективная характеристика состояния общества.

    доклад , добавлен 16.03.2010

    Проблемы развития и функционирования общества, места в нем человеческой личности. Позитивное значение отклонения от социально одобряемых целей и ценностей общества по теории Дюркгейма. Социальные функции и статус. Теории общества Парсонса и Миллса.

    реферат , добавлен 03.12.2009

    Характеристика социальной структуры общества, изучение ее основных элементов: классы, сословия, жители города и деревни социально-демографические группы, национальные общности. Особенности социальной мобильности и анализ проблемы гражданского общества.

    реферат , добавлен 01.02.2010

    Структура общества, характер развития и содержание его деятельности. Социальное пространство и общественные отношения как условие формирования различных сфер жизни общества: политической, духовной, социальной и экономической, их сущность и взаимовлияние.

    презентация , добавлен 29.11.2011

    Структура общества как целостного социального организма. Сферы жизни общества. Социальная деятельность. Выявление особых свойств общества как целого. Управление людьми, вещами на разных уровнях: от семьи, предприятия, организации и до уровня государства.

    контрольная работа , добавлен 07.10.2008

    Теория развития общества. Циклическая и линейная модели социального развития. Развитие человеческого мышления. Теория социального конфликта, поступательного развития общества. Глобализация современного общества. Проблемы классов современного общества.

    реферат , добавлен 17.09.2008

    Понятие социальной структуры общества, описание его элементов. Аналитический обзор социальной структуры общества в целом. Состояние социальной структуры общества в постсоветской России, ее трансформация в настоящее время, поиски путей ее улучшения.

    курсовая работа , добавлен 06.05.2010

  • 1.2. Миропонимание и научные достижения натурфилософии античности. Атомистика. Геоцентрическая космология. Развитие математики и механики
  • 3.1.Научные революции в истории естествознания
  • 3.2. Первая научная революция. Гелиоцентрическая система мира. Учение о множественности миров
  • 3.3. Вторая научная революция. Создание классической механики и экспериментального естествознания. Механическая картина мира
  • 3.4. Химия в механистическом мире
  • 3.5. Естествознание Нового времени и проблема философского метода
  • 3.6. Третья научная революция. Диалектизация естествознания
  • 3.7. Очищение естествознания
  • 3.8. Исследования в области электромагнитного поля и начало крушения механистической картины мира
  • I Естествознание XX века
  • 4.1.Четвертая научная революция. Проникновение в глубь материи. Теория относительности и квантовая механика. Окончательное крушение механистической картины мира
  • 4.2. Научно-техническая революция, ее естественнонаучная составляющая и исторические этапы
  • 4.3. Панорама современного естествознания 4.3.1. Особенности развития науки в XX столетии
  • 4.3.2. Физика микромира и мегамира. Атомная физика
  • 4.3.3. Достижения в основных направлениях современной химии
  • 4.3.4. Биология XX века: познание молекулярного уровня жизни. Предпосылки современной биологии.
  • 4.3.5. Кибернетика и синергетика
  • Раздел III
  • I Пространство и время
  • 1.1.Развитие представлений о пространстве и времени в доньютоновский период
  • 1. 2. Пространство и время
  • 1.3. Дальнедействиеи близкодействие. Развитие понятия «поля»
  • 2.1.Принцип относительности Галилея
  • 2.2. Принцип наименьшего действия
  • 2.3. Специальная теория относительности а. Эйнштейна
  • 1. Принцип относительности: все законы природы оди­ наковы во всех инерциальных системах отсчета.
  • 2.4. Элементы общей теории относительности
  • 3. Закон сохранения энергии в макроскопических процессах
  • 3.1. «Живая сила»
  • 3.2. Работа в механике. Закон сохранения и превращения энергии в механике
  • 3.3. Внутренняя энергия
  • 3.4. Взаимопревращения различных видов энергии друг в друга
  • 4. Принцип возрастания энтропии
  • 4.1. Идеальный цикл Карно
  • 4.2. Понятие энтропии
  • 4.3. Энтропия и вероятность
  • 4.4. Порядок и хаос. Стрела времени
  • 4.5. «Демон Максвелла»
  • 4.6. Проблема тепловой смерти Вселенной. Флуктуационная гипотеза Больцмана
  • 4.7. Синергетика. Рождение порядка из хаоса
  • I Элементы квантовой физики
  • 5.1. Развитие взглядов на природу света. Формула Планка
  • 5.2. Энергия, масса и импульс фотона
  • 5.3. Гипотеза де Бройля. Волновые свойства вещества
  • 5.4. Принцип неопределенности Гейзенберга
  • 5.5. Принцип дополнительности Бора
  • 5.6. Концепция целостности в квантовой физике. Парадокс Эйнштейна-Подольского-Розена
  • 5.7. Волны вероятности. Уравнение Шредингера. Принцип причинности в квантовой механике
  • 5.8. Состояния физической системы. Динамические и статистические закономерности в природе
  • 5.9. Релятивистская квантовая физика. Мир античастиц. Квантовая теория поля
  • I На пути построения единой теории поля 6.1. Теорема Нетер и законы сохранения
  • 6.2. Понятие симметрии
  • 6.3. Калибровочные симметрии
  • 6.4. Взаимодействия. Классификация элементарных частиц
  • 6.5. На пути к единой теории поля. Идея спонтанного нарушения симметрии вакуума
  • 6.6. Синергетическое видение эволюции Вселенной. Историзм физических объектов. Физический вакуум как исходная абстракция в физике
  • 6.7. Антропный принцип. «Тонкая подстройка» Вселенной
  • Раздел IV
  • 1. Химия в системе "общество-природа"
  • I Химические обозначения
  • Раздел V
  • I Теории возникновения жизни
  • 1.1. Креационизм
  • 1.2. Самопроизвольное (спонтанное) зарождение
  • 1.3. Теория стационарного состояния
  • 1.4. Теория панспермии
  • 1.5. Биохимическая эволюция
  • 2.1. Теория эволюции Ламарка
  • 2.2. Дарвин, Уоллес и происхождение видов в результате естественного отбора
  • 2.3. Современное представление об эволюции
  • 3.1. Палеонтология
  • 3.2. Географическое распространение
  • 3.3. Классификация
  • 3.4. Селекция растений и животных
  • 3.5. Сравнительная анатомия
  • 3.6. Адаптивная радиация
  • 3.7. Сравнительная эмбриология
  • 3.8. Сравнительная биохимия
  • 3.9. Эволюция и генетика
  • Раздел VI. Человек
  • I Происхождение человека и цивилизации
  • 1.1.Возникновение человека
  • 1.2. Проблема этногенеза
  • 1.3. Культурогенез
  • 1.4. Появление цивилизации
  • I Человек и биосфера
  • 7.1.Концепция в.И. Вернадского о биосфере и феномен человека
  • 7.2. Космические циклы
  • 7.3. Цикличность эволюции. Человек как космическое существо
  • I оглавление
  • Раздел I. Научный метод 7
  • Раздел II. История естествознания 42
  • Раздел III. Элементы современной физики 120
  • Раздел IV. Основные понятия и представления химии246
  • Раздел V.. Возникновение и эволюция жизни 266
  • Раздел VI. Человек 307
  • 344007, Г. Ростов-на-Дону,
  • 344019, Г. Ростов-на-Дону, ул. Советская, 57. Качество печати соответствует предоставленным диапозитивам.
  • 5.9. Релятивистская квантовая физика. Мир античастиц. Квантовая теория поля

    Квантовая механика, которая в первых работах Бора, Шредингера, Гейзенберга и других ученых являлась, в ос­новном, теорией атомных спектров, получила за короткое время интенсивное развитие и была обобщена до теории, описывающей поведение микрообъектов в микромире. Фи­зики стали делить окружающий нас мир на три уровня: мега-, макро- и микромир. Это оказалось возможным бла­годаря синтезу квантовой механики и специальной теории относительности, благодаря созданию релятивистской кван­товой механики.

    В 1927 году английский физик Поль Дирак, рассмат­ривая уравнение Шредингера, обратил внимание на его не­релятивистский характер. При этом квантовая механика описывает объекты микромира, и хотя к 1927 году их было известно только три: электрон, протон и фотон (даже ней­трон был экспериментально обнаружен только в 1932 году), было ясно, что движутся они со скоростями, весьма близ­кими к скорости света или равными ей, и более адекват­ное описание их поведения требует применения специаль­ной теории относительности. Дирак составил уравнение, которое описывало движение электрона с учетом законов и квантовой механики и теории относительности Эйнштей­на, и получил формулу для энергии электрона, которой удовлетворяли два решения: одно решение давало извест­ный электрон с положительной энергией, другое - неизве­стный электрон-двойник, но с отрицательной энергией. Так возникло представление о частицах и соответствующих им

    античастицах, о мирах и антимирах. К этому же времени была разработана квантовая электродинамика. Суть ее со­стоит в том, что поле более не рассматривается как кон-тинуалистская непрерывная среда. Дирак применил к те­ории электромагнитного поля правила квантования, в результате чего получил дискретные значения поля. Обна­ружение античастиц углубило представление о поле. Счи­талось, что электромагнитного поля нет, если нет квантов этого поля - фотонов. Следовательно, в этой области про­странства должна быть пустота. Ведь специальная теория относительности «изгнала» из теории эфир, можно сказать, что победила точка зрения о вакууме, о пустоте. Но пуст ли вакуум, - вот вопрос, который вновь возник в связи с открытием Дирака. Сейчас хорошо известны факты, дока­зывающие, что вакуум пуст только в среднем. В нем по­стоянно рождается и исчезает огромное количество вирту­альных частиц и античастиц. Даже если мы меряем заряд электрона, то, как оказалось, голый заряд электрона равнял­ся бы бесконечности. Мы же измеряем заряд электрона в «шубе» окружающих его виртуальных частиц.

    Собственно представление о вакууме как непрерывной активности содержащихся в нем виртуальных частиц со­держится в принципе неопределенности Гейзенберга. Прин­цип неопределенности Гейзенберга имеет, кроме приведен­ного выше, еще и такое выражение:Согласно этому квантовые эффекты могут на время нарушать закон сохранения энергии. В течение короткого времениэнер­гия, взятая как бы «взаймы», может расходоваться на рож­дение короткоживущих частиц, исчезающих при возвраще­нии «займа» энергии. Это и есть виртуальные частицы. Возникая из «ничего», они снова возвращаются в «ничто». Так что вакуум в физике оказывается не пустым, а пред­ставляет собой море рождающихся и тут же гасящихся всплесков.

    Квантовая теория поля является ядром всей современ­ной физики, представляет собой общий подход ко всем известным типам взаимодействий. Одним из важнейших результатов ее является представление о вакууме, но уже не пустом, а насыщенным всевозможными флуктуациями всевозможных полей. Вакуум в квантовой теории поля определяется как наинизшее энергетическое состояние кван-

    тованного поля, энергия которого равна нулю только в сред­нем. Так что вакуум - это «Нечто» по имени «Ничто».

    Релятивистская квантовая теория поля, которая нача­лась работами Дирака, Паули, Гейзенберга в конце 20-х го­дов нашего столетия, была продолжена в трудах Фейнма-на, Томонаги, Швингера и других ученых, давая все более полное представление о физической неразложимости мира, о несведении его к отдельным элементам. Здесь принцип целостности находит свое отражение при рассмотрении взаимодействия микрообъектов с определенным состояни­ем физического вакуума. Именно в этом взаимодействии все элементарные частицы обнаруживают свои свойства. Вакуум рассматривается как объект физического мира, выражающий как раз момент физической неразложимос­ти его.

    Какова судьба понятия «вакуум» в современной физике XXI столетия? Почему наш мир состоит преимущественно из вещества, а «антивещество» долгое время оставалось скрытым от нашего взгляда? На эти и другие вопросы мы постараемся ответить в кратком очерке современного со­стояния физики элементарных частиц на рубеже третьего тысячелетия, приведенном в следующей главе. Заканчивая же разговор о квантовой физике, отметим, что результаты ее полностью изменили наши представления о мире, наш подход к структуре физических законов. В итоге, вырабо­тан новый тип научного мышления, называемый некласси­ческим, в котором есть место случайности, вероятности, целостности.

    Вопросы для самоконтроля

      Напишите формулу Планка и объясните ее физиче­ ский смысл.

      Какие физические эффекты являются эксперимен­ тальным подтверждением гипотезы Планка?

      В чем состоит гипотеза де Бройля? Чему равна длина волны де Бройля?

      Опишите опыт с двумя щелями и поясните, как вы понимаете волново-корпускулярный дуализм микрообъ­ ектов.

      Какие новые представления о мире возникают в ре­ лятивистской квантовой физике? Расскажите об античас­ тицах и о виртуальных частицах.

      Что представляет собой физический вакуум в кван­ товой теории поля?

    Наши старания описать реальность — не более, чем игра в кости с попыткой предсказать необходимый результат? Джеймс Оуэн Уэзералл, профессор логики и философии науки университета Ирвин, поразмышлял на страницах Nautil.us о загадках квантовой физики, проблеме квантового состояния и о том, насколько оно зависит от наших действий, знаний и субъективного восприятия реальности, и почему, предсказывая разные вероятности, мы все оказываемся правы.

    Физикам хорошо известно, как применять квантовую теорию, – ваш телефон и компьютер тому доказательства. Но знание о том, как что-то использовать, далеко от полного понимания мира, описываемого теорией, и даже от того, что означают различные математические инструменты, которые применяют ученые. Одним из таких математических инструментов, о статусе которого физики уже долго спорят, является «квантовое состояние»Квантовое состояние - любое возможное состояние, в котором может находиться квантовая система. В данном случае под «квантовым состоянием» также следует понимать все потенциальные вероятности выпадения того или иного значения при игре в «кости». — Прим. ред. .

    Одной из самых поразительных особенностей квантовой теории является то, что ее предсказания вероятностны. Если вы проводите эксперимент в лаборатории и используете квантовую теорию для предсказания результатов различных измерений, в лучшем случае теория может только предсказать вероятность результата: например, 50% за предсказанный результат и 50% за то, что он будет иным. Роль квантового состояния – определить вероятность результатов. Если квантовое состояние известно, вы можете рассчитать вероятность получения любого возможного результата для любого возможного эксперимента.

    Представляет ли квантовое состояние объективный аспект реальности или является всего лишь способом характеризовать нас, то есть то, что человек знает о реальности? Этот вопрос активно обсуждался в самом начале изучения квантовой теории и недавно вновь стал актуальным, вдохновив на новые теоретические подсчеты и последовавшие за ними экспериментальные проверки.

    «Если изменить лишь только ваши знания, вещи перестанут казаться странными».

    Для того чтобы понять, почему квантовое состояние иллюстрирует чьи-то знания, представьте случай, в котором вы вычисляете вероятность. Прежде чем ваш друг бросит игральные кости, вы предполагаете, какой стороной они упадут. Если ваш друг бросает обычную шестигранную кость, вероятность того, что ваше предположение окажется верным, будет равна примерно 17% (одна шестая), что бы вы ни загадали. В этом случае вероятность говорит кое-что о вас, а именно о том, что вы знаете об игральном кубике. Предположим, вы повернулись спиной во время броска, и ваш друг видит результат – пусть это будет шесть, но вам этот результат неизвестен. И пока вы не обернетесь, исход броска остается неопределенным, даже несмотря на то, что вашему другу он известен. Вероятность, представляющая человеческую неуверенность, даже если реальность определена, называется эпистемной , от греческого слова «знание».

    Это означает, что вы и ваш друг могли определить разные вероятности, при этом ни один из вас не ошибется. Вы скажете, что вероятность выпадения шестерки на кубике равна 17%, а ваш друг, уже знакомый с результатом, назовет ее равной 100%. Это связано с тем, что вам и другу известны разные вещи, и названные вами вероятности представляют разную степень вашего знания. Единственным неверным предсказанием было бы такое, которое исключает возможность выпадения шестерки вообще.

    В течение последних пятнадцати лет физиков волновал вопрос, может ли квантовое состояние оказаться эпистемным таким же образом. Предположим, некоторое состояние материи, например, распределение частиц в пространстве или результат игры в кости, определенно, но вам не известно. Квантовое состояние, согласно такому подходу, является всего лишь способом описания неполноты ваших знаний об устройстве мира. В разных физических ситуациях может быть несколько способов определить квантовое состояние в зависимости от известной информации.

    Читайте также:

    Соблазнительно думать о квантовом состоянии таким образом из-за того, что при измерении параметров физической системы оно становится другим. Проведение измерений меняет это состояние из такого, где каждый возможный исход имеет ненулевую вероятность, до того, где возможен лишь один исход. Это похоже на то, что происходит при игре в кости, когда вы узнаете выпавший результат. Может показаться странным, что мир может измениться просто из-за того, что вы проводите измерения. Но если происходит всего лишь изменение ваших знаний, это больше не удивляет.

    Еще одной причиной полагать квантовое состоянием эпистемным является то, что с помощью единственного эксперимента невозможно определить, каким было квантовое состояние до его проведения. Это тоже напоминает игру в кости. Предположим, ваш друг предлагает поиграть и утверждает, что вероятность выпадения шестерки равна всего 10%, тогда как вы настаиваете на 17%. Может ли один единственный эксперимент показать, кто из вас прав? Нет. Дело в том, что выпавший результат сопоставим с обеими оценками вероятности. Нет никакой возможности понять, кто из вас двоих прав в каждом конкретном случае. Согласно эпистемному подходу к квантовой теории, причина, по которой невозможно экспериментально определить большинство квантовых состояний, подобна игре в кости: для каждой физической ситуации есть несколько вероятностей, согласуемых с множественностью квантовых состояний.

    Роб Спеккенс, физик из института теоретической физики (Ватерлоо, Онтарио), опубликовал в 2007 году научную работу, где представил «игрушечную теорию», разработанную для имитации квантовой теории. Эта теория не совсем аналогична квантовой, так как упрощена до предельно простой системы. Система имеет всего два варианта каждого из ее параметров: например, «красный» и «синий» для цвета и «верх» и «низ» для положения в пространстве. Но, как и в случае квантовой теории, она включала состояния, которые можно использовать для вычисления вероятности. И предсказания, сделанные с ее помощью, совпадают с предсказаниями квантовой теории.

    «Игрушечная теория» Спеккенса была волнующей, поскольку, как и в квантовой теории, ее состояния были «не определяемы» — и эта неопределенность полностью объяснялась тем, что эпистемная теория действительно имеет отношение к реальным физическим ситуациям. Другими словами, «игрушечная теория» была подобна квантовой, и ее состояния были однозначно эпистемными. Так как в случает отказа от эпистемного взгляда неопределенность квантовых состояний не имеет чёткого объяснения, Спеккенс и его коллеги посчитали это достаточным основанием для того, чтобы считать квантовые состояния также эпистемным, но в этом случае «игрушечная теория» должна быть распространена на более сложные системы (т.е. на физические системы, объясняемые квантовой теорией). С тех пор она повлекла за собой ряд исследований, в которых одни физики пытались объяснить с ее помощью все квантовые явления, а другие – показать ее ошибочность.

    «Эти предположения непротиворечивы, но это не значит, что они верны».

    Таким образом, противники теории поднимают руки выше. Например, один широко обсуждаемый результат 2012 года, опубликованный в Nature Physics, показал, что если один физический эксперимент может быть проведен независимо от другого, тогда не может быть никакой неопределенности по поводу «правильного» квантового состояния, описывающего этот эксперимент. Т.о. все квантовые состояния являются «правильными» и «верными», за исключением тех, которые совершенно «нереальны», а именно: «неверными» являются состояния вроде тех, когда вероятность выпадения шестерки равна нулю.

    Другое исследование, опубликованное в Physical Review Letters в 2014 Джоанной Баррет и другими, показало, что модель Спеккенса нельзя применить для системы, в которой каждый параметр имеет три или более степени свободы – например, «красный», «синий» и «зеленый» для цвета, а не просто «красный» и «синий» — без нарушений предсказаний квантовой теории. Сторонники эпистемного подхода предлагают эксперименты, которые могли бы показать разницу между предсказаниями квантовой теории и предсказаниями, сделанными любым эпистемным подходом. Таким образом, все проведенные эксперименты в рамках эпистемного подхода могли бы в какой-то степени согласовываться со стандартной квантовой теорией. В связи с этим нельзя интерпретировать все квантовые состояния как эпистемные, так как квантовых состояний больше, а эпистемные теории покрывают только часть квантовой теории, т.к. они дают результаты, отличные от результатов квантовой.

    Исключают ли эти результаты идею о том, что квантовое состояние указывает на характеристики нашего разума? И да, и нет. Аргументы против эпистемного подхода являются математическими теоремами, доказанными по особой структуре, применяемой для физических теорий. Разработанная Спеккенсом как способ объяснения эпистемного подхода, эта структура содержит несколько фундаментальны допущений. Одно из них заключается в том, что мир всегда находится в объективном физическом состоянии, не зависимом от наших знаний о нем, которое может совпасть, а может не совпасть с квантовым состоянием. Другое заключается в том, что физические теории делают предсказания, которые могут быть представлены с использованием стандартной теории вероятности. Эти предположения непротиворечивы, но это не означает, что они верны. Результаты показывают, что в такой системе не может быть результатов, эпистемичных в том же смысле, что и «игрушечная теория» Спеккенса, пока она согласует с квантовой теорией.

    Можно ли на этом поставить точку, зависит от вашего взгляда на систему. Здесь мнения расходятся.

    Например, Оуэе Марони, физик и философ Оксфордского университета и один из авторов статьи, опубликованной в 2014 в Physical Review Letters, в электронном письме сказал, что «наиболее правдоподобные пси-эпистемические модели» (т.е. те, которые можно приспособить к системе Спеккенса) исключаются. Также Мэтт Лейфер, физик университета Шампани, написавший много работ по эпистемичному подходу к квантовом состояниям, сказал, что вопрос был закрыт еще в 2012 — если вы, конечно, согласны принимать независимость исходных состояний (к чему Лейфер и склоняется).

    Спеккенс более бдителен. Он соглашается с тем, что эти результаты сильно ограничивают применение эпистемного подхода к квантовым состояниям. Но он подчеркивает, что эти результаты получены внутри его системы, и как создатель системы он указывает на ее ограничения, такие, как допущения по поводу вероятности. Таким образом, эпистемный подход к квантовым состояниям остается уместным, но если это так, то нам необходимо пересмотреть основные допущения физических теорий, которые многие физики принимают без вопросов.

    Тем не менее, очевидно, что в фундаментальных вопросах квантовой теории произошел существенный прогресс. Многие физики склонны называть вопрос о значении квантового состояния просто интерпретационным или, хуже того, философским, но лишь до тех пор, пока им не приходится разрабатывать новый ускоритель частиц или совершенствовать лазер. Называя проблему «философской», мы словно выносим ее за переделы математики и экспериментальной физики.

    Но работа над эпистемным подходом показывает неправомерность этого. Спеккенс и его коллеги взяли интерпретацию квантовых состояний и превратили ее в точную гипотезу, которая затем наполнилась математическими и экспериментальными результатами. Это не значит, что сам по себе эпистемный подход (без математики и экспериментов) мертв, это значит, что его защитникам нужно выдвигать новые гипотезы. И это бесспорный прогресс – как для ученых, так и для философов.

    Джеймс Оуэн Уэзералл — профессор логики и философии науки университета Ирвин, Калифорния. Его последняя книга «Странная физика пустоты» рассматривает историю изучения структуры пустого пространства в физике с 17 века до наших дней.

    Другие книги схожей тематики:

      Автор Книга Описание Год Цена Тип книги
      Шахов Анатолий Алексеевич Монографическая постановка с единых методологических позиций разработанной квантовой концепции полного теоретического обоснования реальности и обобщения современных достижений различных наук в… - @Спутник+, @(формат: 60x90/16, 80 стр.) @ @ @ 2017
      260 бумажная книга
      Шахов Анатолий Алексеевич Монографическая постановка с единых методологических позиций разработанной квантовой концепции полного теоретического обоснования реальности и обобщения современных достижений различных наук в… - @Спутник +, @(формат: 60x90/16, 134 стр.) @ @ @ 2017
      333 бумажная книга
      В. А. Филин В настоящей книге автор применяет квантовую теорию к описанию развития общества, пытаясь проанализировать с естественно-научной точки зрения одну из самых разрушительных сил - бюрократическую систему… - @Либроком, @(формат: 60x90/16, 56 стр.) @Relata Refero @ @ 2009
      86 бумажная книга
      В. А. Филин Квантовая теория общественного развития. Новый взгляд на экономико-политические процессы В настоящей книге автор применяет квантовую теорию к описанию развития общества, пытаясь проанализировать с естественно-научной точки зрения одну из самых разрушительных сил - бюрократическую систему… - @Либроком, @(формат: 60x90/16, 80 стр.) @Relata Refero @ @ 2011
      286 бумажная книга
      Филин В.А. Квантовая теория общественного развития. Новый взгляд на экономико-политические процессы В настоящей книге автор применяет квантовую теорию к описанию развития общества, пытаясь проанализировать с естественно-научной точки зрения одну из самых разрушительных сил - бюрократическую систему… - @URSS, @(формат: 60x90/16, 80 стр.) @Relata Refero @ @ 2012
      189 бумажная книга
      В. А. Филин Квантовая теория общественного развития. Новый взгляд на экономико-политические процессы В настоящей книге автор применяет квантовую теорию к описанию развития общества, пытаясь проанализировать с естественно-научной точки зрения одну из самых разрушительных сил - бюрократическую систему… - @Либроком, @(формат: 60x90/16, 80 стр.) @ @ @ 2011
      244 бумажная книга
      Пол Парсонс Научные теории за 30 секунд Теория хаоса, унификация или теория всего, теория относительности, кот Шредингера и законы движения? Несомненно, вы знаете, что это такое. То есть вы, конечно, об этомслышали. Но знаете ли вы… - @StorySide AB, @(формат: 60x90/16, 56 стр.) @За 30 секунд @ аудиокнига @ можно скачать 2009
      189 аудиокнига
      Джордж Массер Нелокальность. Феномен, меняющий представление о пространстве и времени, и его значение для черных дыр, Большого взрыва и теорий всего Отзывы`Локальность была одним из основополагающих принципов, которые определяли триумфальное развитие физики в XX в. Однако парадоксы и противоречия локальных законов и квантовой теории привели к… - @Альпина Нон-фикшн, @(формат: 60x90/16, 370 стр.) @ @ @ 2018
      332 бумажная книга